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Abstract. During the COVID-19 health crisis, the demand for public
transport has decreased, and even today has not recovered its pre-crisis
level. In this paper, we propose a network design methodology on a bus
network, which, starting from existing bus stops and a (decreasing) de-
mand on them, constructs a set of lines with interesting properties. On
the one hand, the lines created do not promote any geographical areas
such as city centers, and ensure a certain equity from a geographical
point of view. On the other hand, for any given trip, a user can take only
one bus line, which limits the contamination locations. This methodol-
ogy, based on origin/destination clustering, is decomposed into several
independent steps that we explain separately. Then the methodology is
tested on real data from the region of Lyon, in France.
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1 Introduction

In a public transport network, one of the challenges is to match supply with
demand. Demand is defined as a set of trips that users want to take, as well
as the number of users who want to take them. Supply, on the other hand,
is the set of infrastructure, vehicles, and human resources that are in place
to meet the demand. The match between supply and demand is an important
element: if supply exceeds demand, then unnecessary costs are incurred, which
is detrimental especially for a public operator. If, on the other hand, demand
exceeds supply, then some trips will be difficult (delays, congestion, etc.), or even
impossible, which causes problems if we want everyone to feel free to travel.

During the health crisis related to the COVID-19 pandemic, the demand for
public transport was strongly impacted. During the lockdowns, of course, all
mobilities have been very strongly reduced reaching a level of almost zero for
public transport [2]. However, even nowadays, when a relative ”back to normal”
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is observed, the use of public transport has still not recovered its pre-crisis level
[4][6][14][11]. This phenomenon can be explained in several ways: on the one
hand, teleworking, which increased during and after the successive lockdowns,
may have changed the mobility habits of workers. Thus, if a public transport
subscription was profitable for 5 days of work on site, it is less so if one teleworks
two or three days a week. On the other hand, the fear of contamination in public
transport may have pushed some users to individual modes (car, bicycle...). The
increase in the number of kilometers of traffic jams in the major cities since
January 2022, as well as the increase in cycling, corroborate this hypothesis.
Thus, public transport operators are seeing their revenues decrease: in the Lyon
region, it is several hundred million euros since the beginning of the crisis, and
in the Île-De-France region, this figure reaches one billion euros in lost revenue.

As a consequence of the change in demand for public transport, the transport
supply has to be adapted in order to satisfy a sufficient quality of service while
being financially sustainable. When the change in demand is small, adaptation
of frequencies, timetables and vehicle schedules may be sufficient. For example,
D’Acierno et al. propose rescheduling strategies to cope with budget cuts, which
can be adapted to a declining demand. Kang et al. focus on rescheduling the
last trains in case of delays during the day, which results in a slight variation in
demand during the day [9]. Concerning a periodic variation in demand related to
vacations, Gkiotsalitis et al. focused on changes in schedules for leisure activities
during these periods [8].

However, when demand is overly affected, simply changing the frequency of
public transport does not sufficient for effective adaptation. It is then necessary
to completely rebuild the lines: this is called network design or network redesign.

LeBlanc defines transport network design as the problem of finding the op-
timal frequencies of transit lines. Lee et al. also consider the possibility that the
transit demand could change over time [10]. In this paper, the authors assume
that the total demand (cars and transit network) is fixed, but the proportion
of demand for transit network can vary. More recently Cipriani, Gori and Pe-
trelli have proposed a case study of network design for the city of Rome, with
multi-modal properties and complex road network topology [3]. Lo et al. con-
sider network design under demand uncertainty for ferries [12]. Ukkusuri et al.
focus instead on multi-stage network design in order to accommodate demand
fluctuations and demand uncertainty [15].

In this article, we focus on a network design methodology on a bus network.
As we have seen, the demand for public transport has been strongly impacted
by the health crisis, but the evolution of this demand is uncertain. It is not yet
known whether the changes that have occurred will last over time, become more
important, or whether a return to a pre-crisis level will ever be achieved. Thus it
is advisable to choose a mode that is easily adaptable to possible future changes.
This is why we have chosen to focus on bus networks, because it is relatively
easy to change bus lines or to use or not to use bus stops, which is more difficult
with heavy infrastructures such as tramways, subways or trains.
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In order to lie down on existing infrastructure, we use existing bus stops.
From these existing bus stops and a known demand on them, we propose a
methodology to create a new bus network. We ensure that (i) for each trip, it
is necessary to take only one bus line and (ii) no geographical zone is a priori
given a preferential treatment, guaranteeing a certain equity within the network
we consider. This methodology is composed of several independent blocks, which
can be modified without questioning the global path. We present here a version
with simple assumptions, but it is possible to make each block more complex
in order to improve the model in a modular way. The paper is organized as
follows: in a first part we present the theoretical model. We present each block
independently while explaining the main thread of the methodology. Then we
apply the methodology to the bus network of Lyon to give and analyze results
with real data.

2 Methodology

In this part, we theoretically present the methodology that from a set of bus
stops and a demand on them, constructs a set of lines with interesting properties
that we will analyze later in the paper. This methodology, based on clustering
of origin/destination pairs, is decomposed into several blocks that follow each
other but are independent. Figure 1 presents a diagram representing the different
steps of the methodology. Let us now formalize this methodology.

Fig. 1. Outline of the methodology

Let G = (V,E) be a graph representing the bus network: V represents the
|V | = n bus stops, and E the |E| = m road network axes that connect these
bus stops. We assume that we have a demand on the bus stops, i.e. an ori-
gin/destination matrix OD such that for any v1, v2 ∈ V , OD(v1, v2) represents
the number of people wanting to go from stop v1 to v2. This demand is consid-
ered to be time-independent, but it may result from aggregating dynamic data.
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We also assume that we know the minimal distance between each pair of ver-
tices of G, i.e. that for any v1, v2 ∈ V , we know the value of the shortest path
d(v1, v2).

2.1 Creation of the OD-Graph

The first step is to create an auxiliary graph G′, whose vertices represent the
different origin/destination pairs of G (OD pairs for short) that are interesting,
i.e. which origin and destination are not too close. Moreover, we want to link two
vertices of G′ if and only if the sum of the distance between the corresponding
origins and destinations is not too big. More formally, we define a threshold
dwalk which represents the distance we accept to walk, and we define a graph
G′ = (V ′, E′) with:

V ′ = {v′ = (o, d) ∈ V |d(o, d) > dwalk} (1)

E′ = {(v′1 = (o1, d1), v
′
2 = (o2, d2)) ∈ V ′|d(o1, o2) + d(d1, d2) < dwalk} (2)

For instance, dwalk can be based on the distance that an average pedestrian
can walk in a given time (15, 20min...). Thus the vertices of G′ represent the
OD pairs that we do not allow to walk.

Fig. 2. Distance between two ODs (o1, d1) and (o2, d2)

Moreover, two OD pairs (v′1, v
′
2) are linked in G′ if and only if doing the trip

v′2 instead of v′1 induces an increase of the distance of maximum dwalk. Figure
2 illustrate the distance between two ODs. So G′ represents the graph of close
OD of G.

By abusing the notations, we call v ∈ V ′ the path (o, d) such that v = (o, d).
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2.2 Clustering on OD-Graph

The second step is to apply a clustering algorithm to G′. There are several known
clustering algorithms.

The spectral clustering is a clustering algorithm in which one can choose the
number of clusters as input parameter [16]. It is based on the Laplacian matrix
of the graph on which it is applied, and evaluates the differences between the
eigenvalues of this matrix in order to create clusters which can be related to the
”almost connected components” of the graph. Thus clusters have both a high
connectivity within them, and a low connectivity between clusters. On the one
hand, the advantage of this algorithm is that it is very fast and gives clusters that
have good properties. One of the big issues, on the other hand, is to decide the
number of clusters. There are statistical methods to decide a ”natural” number
of clusters [13], but in our case, the number of clusters will be strongly related
to the number of output lines. Thus, the fact that the number of clusters is an
input parameter of the clustering algorithm allows us to size the network.

The Louvain method does not take the number of clusters as an input param-
eter. This algorithm computes a set of clusters on the graph, and optimizes the
modularity [5]. The modularity is a metric that relates to both the connectivity
within the cluster, but also to the connectivity between clusters. Thus a cluster
having a high modularity will have a strong connectivity between the vertices
composing it, but a very weak one between the nodes of the cluster and those
of other clusters.

For the following, let us assume that we apply a spectral clustering algorithm
to G′. We define a number c ∈ Z+ of clusters. We thus obtain a set of clusters
C = {C1, C2, ..., Cc}.

Thus, given the definition of G′, C corresponds to a set of clusters grouping
similar ODs. Indeed, two nodes of G′ are linked if and only if their respective
ODs can easily swap. The next step is to cleverly choose a representative of each
cluster.

2.3 Choice of Representative

In this third step, we will consider each cluster Ci separately. For each i ∈ J1, cK,
we want to choose a good representative of Ci. A representative r(Ci) ∈ Ci must
have some properties.

First, it must be central: for each vertex v ∈ Ci, the distance between v and
r(Ci) must not be too large. Here we define the distance D as the minimum
number of edges connecting two vertices. Thus, if r(Ci) is central, then making
the path r(Ci) instead of v ∈ Ci will not induce a too big increase of the distance
to walk.

On the other hand, we would like to choose r(Ci) taking into account the
demand. Since v ∈ V ′ corresponds to an OD, there is a demand associated to
v. Thus, for any v′ = (o, d) ∈ V ′, we define OD(v′) = OD(o, d). To choose the
representative of Ci, we would like to promote vertices with a large demand.
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We define the weighted distance DCi on the vertices of Ci as follows. For all
v ∈ V ′:

DCi = min
v∈Ci

∑
u∈Ci

D(u, v)OD(u) (3)

WhereD(u, v) represents the minimum number of edges inG′ between u ∈ V ′

and v ∈ V ′. In particular, we can compute D for any (u, v) ∈ V ′2 by computing
a shortest path matrix by setting the cost of any edge to 1.

Finally, for any i ∈ J1, cK, we define the representative r(Ci) of Ci as the
vertex of Ci minimizing the weighted distance:

r(Ci) = argmin
v∈Ci

DCi (4)

In the following, the representative of each cluster will be used as a starting
point to create the lines of the bus network.

Note that this choice of representative is not the only one possible. We could
also take less complex metrics but faster to compute, such as centrality in terms
of degrees, i.e. take as representative of Ci the vertex with the highest degree.
As indicated in the introduction, it is possible to take different assumptions at
each step of this methodology.

2.4 Construction of the Lines and Aggregation

Now that we have defined for each cluster Ci a central representative that takes
into account the demand, we will build bus lines from these representatives. For
each i ∈ J1, cK, we will define a line lCi whose terminus will be the origin and
the destination associated to r(Ci).

Let i ∈ J1, cK, we can define lCi as the shortest path in G (in the initial graph
of bus stops). The advantage of taking the shortest path is that in this case, by
definition, lCi

will be the line that connects these terminals the fastest. However,
one can think of other choices because if one does not choose the shortest path,
then one passes through potentially more bus stops, so the network serves a
larger number of bus stops. Thus for r(Ci) = (oCi , dCi), we define lCi as:

lCi
= (oCi

, .., dCi
) = SPG(oCi

, dCi
) (5)

where SPG(oCi , dCi) is the shortest path in G between oCi and dCi .

Thus we create one line per representative. However, it is likely that some
lines are redundant. Indeed, it is possible that the lines created in this way include
a large number of bus stops in common. Figure 3 shows an example where such
a configuration occurs. Cluster A contains ODs, and cluster B contains ODs.
Thus, when we compute the representative of each cluster, and then the rows
associated with the representatives, the line resulting from cluster A is contained
in the line resulting from cluster B.
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Fig. 3. Example of situation where two lines have common bus stops

We define pcom(l1, l2) as the percentage of bus stops in common between l1
and l2.

pcom(l1, l2) =
|l1 ∩ l2|

min (|l1|, |l2|)
(6)

Thus, if as in Figure 3, lineA is completely included in lineB, then pcom(A,B) =
1. If on the contrary there is no stop in common between two lines A′ and B′,
then pcom(A′, B′) = 0.

To avoid the kind of situation where two lines have a lot of bus stops in
common, we define a threshold paggreg ∈ R+ which represents the percentage of
joint bus stops above which we will aggregate two lines. We apply the algorithm
1. At the end of this algorithm, we ensure that the percentage of joint bus stops
between two lines of the network is at most paggreg.
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Algorithm 1 Aggregate lines

Require: a set of lines L = l1, .., lc
Ensure: a subset L′ ⊆ L such that pcom(l, l′) < paggreg for all pair (l, l′) ∈ L′

continue← True
Lcurr ← L
while continue do

continue← FALSE
for l ∈ Lcurr do

for l′ ∈ Lcurr do
if l ̸= l′ AND pcom(l, l′) > paggreg then

if |l| < |l′| then
Delete l from Lcurr

else
Delete l′ from Lcurr

end if
continue← TRUE

end if
end for

end for
end while
return Lcurr

Thus, by applying the methodology just described, we construct a set of bus
lines. By construction, this network has some interesting properties that we will
describe in the next section.

3 Analysis of the Network

The methodology we used to build a bus network is based on groupings of ODs.
The principle is quite natural: it is about grouping ODs that we would be likely
to swap as users of the network. Indeed, by defining dwalk, we define both the
distance we accept to walk, and thus the minimal length of the ODs we consider.
Moreover, this threshold represents the maximum distance that one will walk if
one chooses v ∈ V ′ rather than v ∈ V if (v, v′) ∈ E′. Once the similar ODs are
grouped, we choose a central representative of each cluster, and we build a line
from the OD corresponding to the representative. Finally, we aggregate the lines
that have a high percentage of bus stops in common.

The bus network resulting from this methodology has some interesting prop-
erties. On the one hand, any user can be advised to take only one bus line, and
this network guarantees a certain equity geographically.

Let (o, d) ∈ V 2 be a trip desired by a user of the network. We can very
simply advise him a trip. Indeed, let d(o, d) ≤ dwalk and in this case the trip
is supposed to be feasible by walking. We suppose that d(o, d) > dwalk. In this
case, there exists v′ ∈ V ′ such that v′ = (o, d) by definition of V ′ (equation 1).
Once we have applied the clustering algorithm on G′, there exists Ci ∈ C such
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that v′ ∈ Ci. Once the cluster containing v′ is known, it is then sufficient to
advise the line lCi

created from r(Ci). Figure 4 summarizes the assignment of a
line to an OD.

Fig. 4. Line to assign according to the OD wanted

Thus it is possible to use only one bus line for any trip one wants to make. In
times of pandemic, this has several advantages. On the one hand, taking only one
line means that there are no transfers, which limits the risks of contamination
and the mixing of users. On the other hand, since there is only one line used by
OD, it is easy to know the minimum capacity that a bus line must support. It is
therefore easy to size the transport supply since it is easy to define the frequency
of buses on each line in order to satisfy the demand.

Moreover, not only can we recommend only one bus line for each user’s trip,
but we can quantify the extra walking distance that the user will have to walk
compared to the existing network. Indeed, for v′ = (o, d) ∈ V ′ ∩ Ci a path
(contained in the cluster Ci, it is enough to compute D(v′, r(Ci)) (recall that
D(u, v) is the minimal distance, in terms of number of edges, between u ∈ V ′ and
v ∈ V ′). The distance to walk in addition will be bounded byD(v′, r(Ci))×dwalk.
We thus have a performance guarantee on the access time and the egress time
of our network.

Finally, to build the OD graph V ′, the demand has not been taken into
account. In fact, the demand only affects the choice of the representative of
each cluster. Thus we do not promote certain ODs a priori in our model. In
most of the current public transport networks, the periphery/center city trips
are often promoted. This is due to the fact that it is usually necessary to make
connections, and that these are more efficient in terms of travel time if they are
made in the city center. In our case, however, since no connections are necessary,
these types of trips are not promoted over others. Thus the network resulting
from our methodology performs efficiently for suburb-to-suburb trips, which are
currently difficult, guaranteeing a certain equity in geographical terms.

In order to test our methodology on a concrete example to evaluate the
resulting network, we applied it with real data on the region of Lyon, France.

4 Case Study: bus network of Lyon

We are interested in the bus network of Lyon. We will follow the methodology
described in the previous section until we obtain a network of bus lines. We will
follow the different steps while discussing the sensitivity to the input parameters.
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For the topology of the network, we use the data of the transit network of Lyon
(TCL) (see [7]). Moreover, for the demand, the OD has been built iteratively
with the LICIT traffic simulation open-source tool SYMUVIA [1], combined
with information from loop detectors in Lyon’s urban area. SYMUVIA has been
parametrized with different origin/destination inputs until the output traffic
matches the real traffic data collected with the loop detectors. So the OD has
been built to match real cases.

The network of Lyon has 468 bus stops. We show the bus stops and the
corresponding road network on Figure 5

Fig. 5. Bus network for the urban area of Lyon, France

This network corresponds to G in the denomination of the methodology. The
first step is to create G′. For this, we choose dwalk and we fix it by taking into
account the average walking speed, and a maximum time that we accept to
walk. Knowing that an average pedestrian walks at 3km.h−1, and that we fix a
maximum walking time of 30min, we fix dwalk = 1500m.

Then, we apply a clustering algorithm. Here we choose the spectral clustering
algorithm since it is one of those that allows to fix the number of clusters c as
input parameter. We can choose several c values. We show in Figure 6, in spite
of the fact that with such a number of clusters it is not possible to obtain good
illustrations, an example with c = 32, c = 50 and c = 150
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Fig. 6. Three examples of clustering of G′ with (from left to right) 32, 50 and 150
clusters

Once the clusters are created, the next step is to choose the representatives
of each cluster. For the same values of c, we show in Figure 8 the representatives
of each cluster by connecting the corresponding origin and destination for each
cluster.

Fig. 7. Representatives of the clusters for (from left to right) 32, 50 and 150 clusters

We continue to apply the methodology described in the previous section by
computing the shortest path between the origin and destination of each repre-
sentative in G. We obtain the following network design for the same values of
c.
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Fig. 8. Set of lines for (from left to right) 32, 50 and 150 clusters

For c = 150, we apply the aggregation procedure to reduce the number of
lines and to ensure that the percentage of common bus stops between the lines is
not too high. Figure 9 presents the lines at the end of the procedure for different
values of paggreg, from paggreg = 0.4 to paggreg = 0.7.

Fig. 9. Procedure of aggregation for paggreg from 0.4 to 0.7

Thus we applied our methodology to create a network of bus lines in the
Lyon area with real data.
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5 Conclusion

In this paper, we focus on a network design methodology based on origin/destination
clustering. We considered a bus network, and after creating an auxiliary graph
containing the origin/destination pairs of the bus network, we applied a cluster-
ing algorithm allowing to group similar ODs. We then chose a good representa-
tive for each cluster, and created a bus line from each of these representatives,
before grouping the lines with a high percentage of common stops.

This methodology results in a network design with interesting properties,
especially in pandemic times. On the one hand, the network allows to use only
one bus line for any trip, which allows to lower the risk of contamination and also
to be able to size the transport supply easily. On the other hand, the final network
guarantees a certain equity between the geographical areas of the considered
urban area.

In future work (to be completed for the conference), we now want to evaluate
the network resulting from our methodology by confronting it with real traffic
conditions. A comparison of travel times for some interesting DOs between the
current network and our proposed network will be done in order to evaluate
the network. The network will be tested with dynamic demand and bus speeds
based on the bimodal (bus and car) MFD model. Even if this part is very im-
portant to validate the global approach, we think that the methodology itself is
an interesting contribution, as well as the case study on the Lyon area.
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